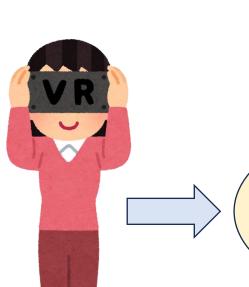

視空間トレーニングが 生体に及ぼす影響に関する研究

A study on the effects of visuospatial training on the human body

非線形科学研究室 伊藤翼指導教員 髙田宗樹, 佐藤勇貴

はじめに

研究背景



長時間のスマホ・液晶利用

視力の低下に...

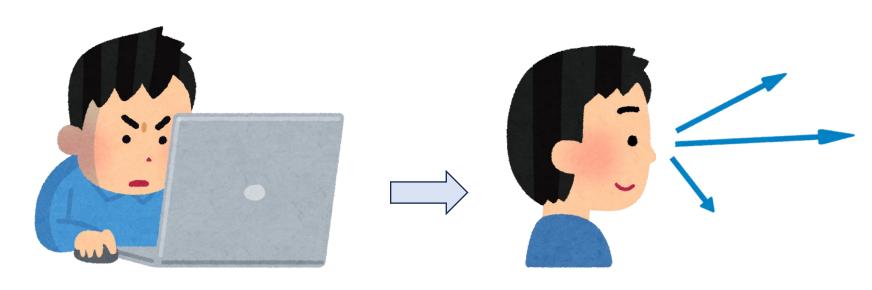
はじめに


<u>実施内容</u>

立体映像視認

集中力の増加

視機能の持続的な改善


視空間トレーニングが 生体に及ぼす影響

脳波の変化

実験原理

視機能改善の原理

液晶で数時間作業を続けると **外眼筋や毛様体筋の収縮** 各部位に合う眼の動きを することで**筋肉を活性化**

(**眼疲労**や**視力低下**など)


実験原理

視機能改善に関わる筋肉

外眼筋:眼球を支え動かす筋肉

毛様体筋:水晶体を調節し

ピントを合わせる筋肉

これらの眼の動きを促す立体映像を視聴させる

実験プロトコル

実験対象者:健常な男性8名(平均±標準偏差:22.38±0.93歳)

実験期間:**5日間連続**で計測

前測定		担党即	後測定	
クレペリン検査 -脳波も計測 (3分)	視力検査	視空間 トレーニング (9分)	視力検査	クレペリン検査 -脳波も計測 (3分)

クレペリン検査・視力検査

クレペリン検査については 計算タスクとして利用 **回答数を集中力の指標**とする

脳波については

- ・安静時閉眼(2分)
- ・計算タスク時(3分)

で計測をおこなう

視力検査については簡易視力表を使用 暗室260 lx の一定照度で視力値を測定


計測時の風景

脳波の各周波数帯域における特徴

脳波の種類	周波数帯域	特徴
δ帯域	1~4Hz	無意識な状態や注意、瞬き、眼球運動
θ帯域	4~8Hz	リラックスが十分にできている状態 ピークパフォーマンス時の情報処理に あらわれる
α帯域	8~12Hz	リラックスしている状態 加齢に伴い、ピークパフォーマンス時の 情報処理にあらわれる
β帯域	12~30Hz	心身の緊張状態 思考、問題解決時にあらわれる
γ帯域	30Hz以上	運動、精神活動、知覚、意識 興奮している状態

<u>視空間トレーニング</u>

3種類の映像合計9分間

①物体が近位と遠位を移動 →**毛様体筋**を刺激

②彗星が多方面に移動 →**外眼筋**を刺激

③球体が近位と遠位を移動→**周辺視野の動作**を作用

実験方法 -解析

脳波解析

2.標準化

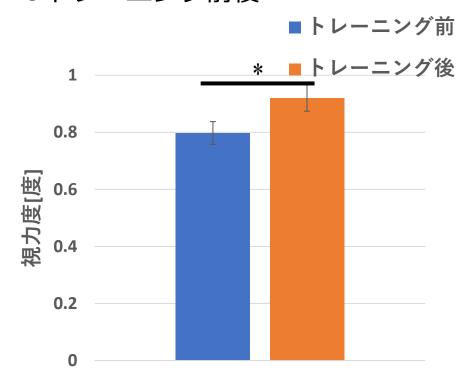
3.評価

- 1. 計測した脳波データにFFTを行い パワースペクトルを算出
- 2. 安静時(閉眼)データを基に標準化
- 3. 顕著な脳活動がみられる時間ステップ数を 集計し**脳活動量**として評価

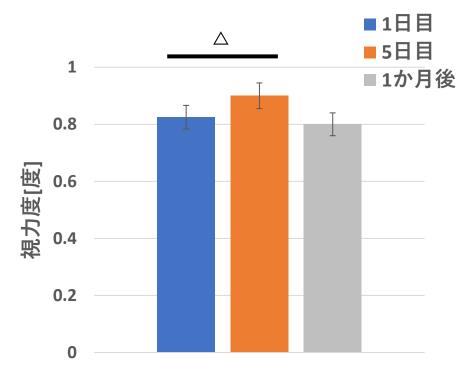
結果

検定結果

 \triangle : p < 0.1 *: p < 0.05 **: p < 0.01


	トレーニング 前と後	1日目と5日目	5日目と 実験終了1か月後
視力値	0.8→0.92	0.83→0.9	0.9→0.8
	* 上 昇	△上昇	低下
計算タスクの回答数	238→249	219→259	259→225
	** 上昇	** 上昇	低下

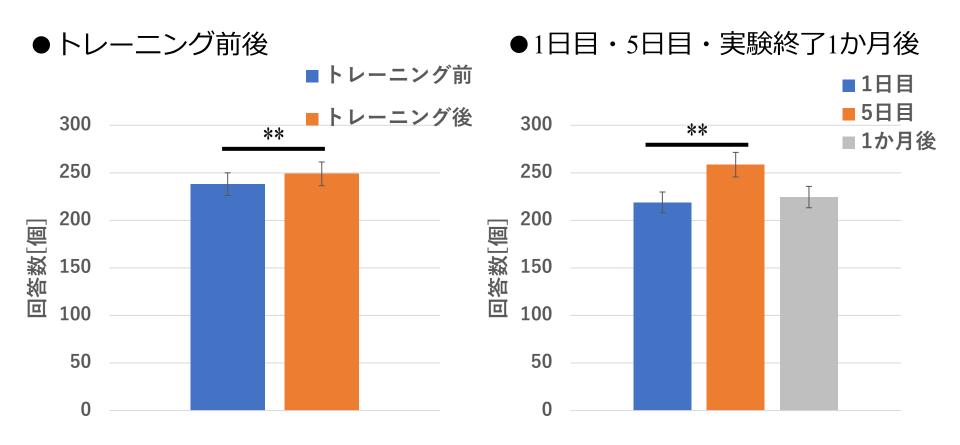
検定にはウィルコクソンの符号付順位和検定を用いた


結果 -視力値

 \triangle : p < 0.1 *: p < 0.05

●トレーニング前後

●1日目・5日目・実験終了1か月後

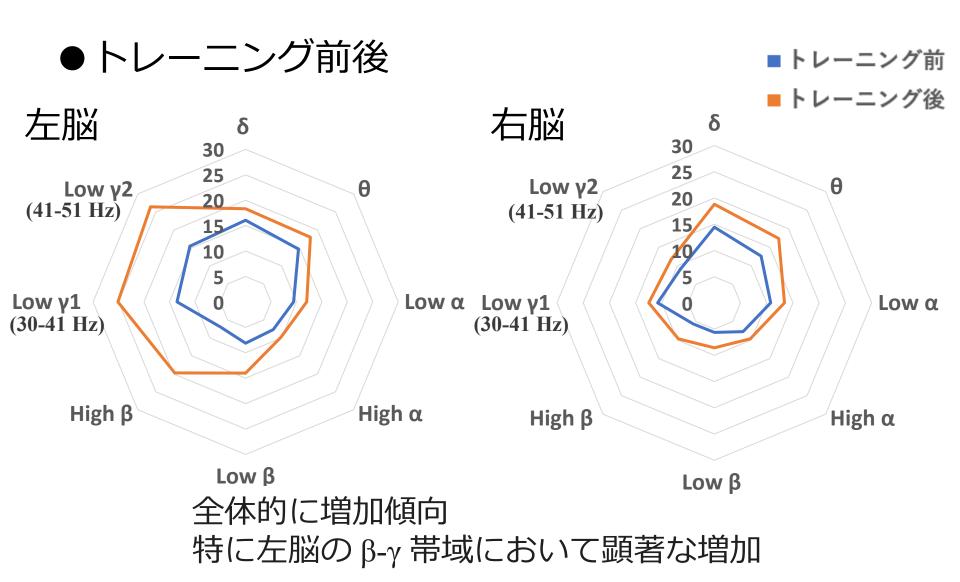


考察 -視力値

- ●1日目と5日目の比較に有意差がみられた
- ▶ 1日単位で戻ることなく持続的に視力値が上昇した 視空間トレーニングの時間や種類の増加が視力値の 維持に影響を与えた可能性
- ●実験終了1か月後、1日目と同水準まで低下
- 対果維持するためには適切な間隔による 視空間トレーニングを行う必要がある

結果 –計算タスクの回答数

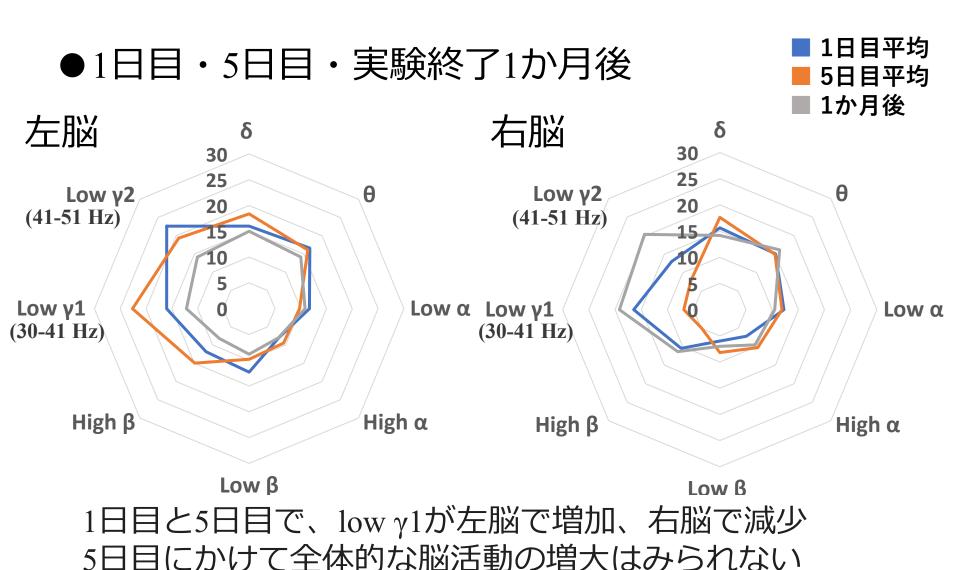
**: p < 0.01


考察 –計算タスクの回答数

- ●実験期間中では有意差がみられた
- ▶ 視空間トレーニングを行う期間中では回答数に増加傾向
 - →視空間トレーニング あるいは 計算タスクの反復により 脳内の信号伝達部位に影響を与えてるのでは

●外的要因

▶ 前測定より高い記録を残したいという心情が 結果に影響を与える可能性がある


結果 - 脳波

考察 ―脳波(トレーニング前後)

- ●左脳の β-γ 帯域において顕著な増加
- ▶ 緊張や思考、問題解決、興奮状態の特徴がある帯域 集中力と関与していると考えられる よって、一時的な視空間トレーニングが
 - 集中力に影響を与えることが示唆される
- ▶ 単純な計算では左脳優位で働くため 左脳の脳活動中心に大きな影響があった可能性

結果 -脳波

考察 -脳波(1日目・5日目・実験終了1か月後)

- ●1日目・5日目の比較で左脳右脳のlow y1に変化
- low γ1は知覚や意識の特徴 計算タスクの反復が左脳の認知処理の効率化を生み 右脳での脳活動が相対的に低下した
- ●5日目にかけて脳活動の増大はみられない
- ▶ 脳活動量が1日単位で元に戻っているといえる 視空間トレーニングが集中力(脳活動)に影響を 与えるのは一時的

まとめ

実験期間中の

- ・一時的・持続的な視力値向上
- ・計算タスクにおける一時的な集中力の増加を確認した
- 視空間トレーニングによって、視機能の改善や 脳活動の変化に有効的な影響を与えることが分かった
- トレーニングを中止した後の視力値の推移
 - →有効的な期間を調査する